Worksheet: Differentiating $y = ax^n$

This worksheet has questions about the differentiation using the power rule which allows you to differentiate equations of the form $y = ax^n$. Before attempting the questions below you should be familiar with the concepts in the study guide: Differentiating using the Power Rule.

1. Find $\frac{dy}{dx}$ when y is defined by the following equations:
 - a) $y = 3x^3$
 - b) $y = x^3$
 - c) $y = -2x^2$
 - d) $y = 1.1x^3$
 - e) $y = 7$
 - f) $y = -23.004$
 - g) $y = 0$
 - h) $y = \pi$
 - i) $y = 2x$
 - j) $y = 4 - x$
 - k) $y = \frac{2}{9}x^3$
 - l) $y = -3 + 2x - 4x^3$

2. Find the gradient at the point where $x = 1$ for all of the curves defined in question 1.

3. Find $\frac{dy}{dx}$ when y is defined by the following equations:
 - a) $y = \frac{x^3}{2}$
 - b) $y = \frac{4-x}{3}$
 - c) $y = 2x^{-1}$
 - d) $y = \frac{2}{x}$
 - e) $y = \frac{5}{x^3}$
 - f) $y = \frac{1}{5}x^3$
 - g) $y = \frac{x^3}{5}$
 - h) $y = \frac{1}{5x^3}$
 - i) $y = x^{\frac{1}{2}}$
 - j) $y = \sqrt{x}$
 - k) $y = \frac{3\sqrt{x}}{7}$
 - l) $y = \frac{4 - \frac{5}{3}\sqrt{x}}{3}$
 - m) $y = \frac{2}{\sqrt{x}}$
 - n) $y = \frac{7}{\sqrt{x}}$
 - o) $y = \frac{x^3 - 3}{2} + \frac{3 - x^3}{2}$
4. Differentiate the following:

a) Find \(\frac{dE}{dv} \) where \(E = \frac{1}{2}mv^2 \) and \(m \) is a constant.

b) Find \(\frac{dE}{dP} \) where \(E = \frac{Q}{P} \) and \(Q \) is a constant.

c) Find \(\frac{dE}{dQ} \) where \(E = \frac{Q}{P} \) and \(P \) is a constant.

d) Find \(\frac{dE}{dm} \) where \(E = mc^2 \) and \(c \) is a constant.

e) Find \(\frac{ds}{dt} \) where \(s = ut + \frac{1}{2}at^2 \) and \(u \) and \(a \) are constants.

f) Find \(\frac{dv^2}{ds} \) where \(v^2 = u^2 + 2as \) and \(u \) and \(a \) are constants.

g) Find \(\frac{dy}{dx} \) where \(y = mx + c \) and \(m \) and \(c \) are constants.