Learning Enhancement Team

STUDENT SUPPORT SERVICE

Model answers: What is a Straight Line?

(a) y = 2x + 7 Yes, with a gradient of 2 and a *y*-intercept of 7.

The equation y = 2x + 7 fits the pattern y = mx + c as you can see if you line up the two equations underneath one another:

y = mx + cy = 2x + 7

So the gradient m = 2 and the y-intercept c = 7.

(b) y = 7x - 2 Yes, with a gradient of 7 and a y-intercept of -2.

The equation y = 7x - 2 fits the pattern y = mx + c as you can see if you line up the two equations underneath one another:

$$y = mx + c$$
$$y = 7x - 2$$

So the gradient m = 7 and the *y*-intercept c = -2. It is common to think that the *y*-intercept in this case is 2, however you must remember to include the sign of the number when you are determining both the intercept and the gradient.

(c) $y = x^2 - 4$ Not a straight line

The equation $y = x^2 - 4$ is not a straight line as it has an x^2 term in it, this makes it a quadratic equation.

(d) y = 2-7x Yes, with a gradient of -7 and a y-intercept of 2.

The equation y = 2-7x fits the pattern y = mx + c, it might help you to see this by writing the *x*-term first like this y = -7x + 2. Now you can see the values of the gradient and *y*intercept if you line up the two equations underneath one another:

$$y = mx + c$$
$$y = -7x + 2$$

So the gradient m = -7 and the *y*-intercept c = 2.

(e)
$$y = \frac{1}{x} + 2$$
 No, due to the reciprocal $\frac{1}{x}$ term.

(f) y = 2x Yes, with a gradient of 2 and a y-intercept of 0.

The equation y = 2x fits the pattern y = mx + c, it might help you to see this by writing the equation as y = 2x + 0. Now you can see the values of the gradient and *y*-intercept if you line up the two equations underneath one another:

$$y = mx + c$$
$$y = 2x + 0$$

So the gradient m = 2 and the *y*-intercept c = 0.

- (g) x = 0 Yes, this is the *y*-axis which is a vertical line.
- (h) $y^3 = 7x 2$ No, due to the y^3 term.
- (i) $\frac{y}{2} = 7$ Yes, this is a horizontal line with a gradient of 0 and *y*-intercept of 14.

The equation $\frac{y}{2} = 7$ fits the pattern y = mx + c, it might help you to see this multiplying both sides by 2 to find that y = 14. You can write this equation as y = 0x + 14 which can help you to see the values of the gradient and *y*-intercept if you line up the two equations underneath one another:

$$y = mx + c$$
$$y = 0x + 14$$

So the gradient m = 0 and the *y*-intercept c = 14.

(j)
$$2x = 4 - 6y$$
 Yes with a gradient of $-\frac{1}{3}$ and *y*-intercept of $\frac{2}{3}$.

To see whether this equation represents a straight line or not you must rearrange it to make *y* the subject, only then can you compare it to y = mx + c and decide. After rearranging the equation you get $y = -\frac{1}{3}x + \frac{2}{3}$. Now you can see the values of the gradient and *y*-intercept if you line up the two equations underneath one another:

$$y = mx + c$$
$$y = -\frac{1}{3}x + \frac{2}{3}$$

So the gradient $m = -\frac{1}{3}$ and the *y*-intercept $c = \frac{2}{3}$.

(k) x-2=0 Yes, this is the vertical line x=2 which can be seen by adding 2 to each side of the equation.

(I) y + x = 7 Yes, with a gradient of -1 and y-intercept of 7.

To see whether this equation represents a straight line or not you must rearrange it to make y the subject, only then can you compare it to y = mx + c and decide. After rearranging the equation you get y = -x + 7 Now you can see the values of the gradient and y-intercept if you line up the two equations underneath one another:

$$y = mx + c$$
$$y = -x + 7$$

So the gradient m = -1 and the *y*-intercept c = 7. Note that $-x = -1 \times x$.

(m) $y^2 = 7x^2 - 2$ No, due both the y^2 and x^2 terms. Remember that you cannot take the square root of both sides to make the line $y = \sqrt{7}x - \sqrt{2}$

(n) y-7 = 2x+5 Yes, with a gradient of 2 and y-intercept of 12.

To see whether this equation represents a straight line or not you must rearrange it to make y the subject, only then can you compare it to y = mx + c and decide. After rearranging the equation you get y = 2x + 12. Now you can see the values of the gradient and y-intercept if you line up the two equations underneath one another:

$$y = mx + c$$
$$y = 2x + 12$$

So the gradient m = 2 and the *y*-intercept c = 12.

(o)
$$3y + 4 = \frac{x}{2} - 7$$
 Yes, with a gradient of $\frac{1}{6}$ and *y*-intercept of $-\frac{11}{3}$.

To see whether this equation represents a straight line or not you must rearrange it to make *y* the subject, only then can you compare it to y = mx + c and decide. After rearranging the equation you get $y = \frac{1}{6}x - \frac{11}{3}$. Now you can see the values of the gradient and *y*-intercept if you line up the two equations underneath one another:

$$y = mx + c$$
$$y = \frac{1}{6}x - \frac{11}{3}$$

So the gradient $m = \frac{1}{6}$ and the *y*-intercept $c = -\frac{11}{3}$.

Want to know more?

If you have any questions about this topic or any other maths, you can make an appointment to see a Learning Enhancement Tutor for Maths and Stats in the Student Support Service.

Email:	ask.let@uea.ac.uk
My UEA:	Search "LET Maths"
Helpdesk	See web site for details
Social Media	@uealearn

