

## **Learning Enhancement Team**

## Model Answers: Factorising Quadratic Expressions

Factorising Quadratic Expressions study guide



(a) 
$$x^2 + 2x + 1 = (x+1)(x+1)$$

To factorise this quadratic expression you need to find two numbers that multiply together to give the constant +1 and also add to give the coefficient of x which is +2.

| Multiplied to make +1 | Added |
|-----------------------|-------|
| +1×+1                 | +2    |
| -1×-1                 | -2    |

From the table you can see that the numbers needed are +1 and +1. So:

$$x^2 + 2x + 1 = (x+1)(x+1)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

(b) 
$$x^2 + 8x + 7 = (x+1)(x+7)$$

To factorise this quadratic expression you need to find two numbers that multiply together to give the constant +7 and also add to give the coefficient of x which is +8.

| Multiplied to make +1 | Added |
|-----------------------|-------|
| +1×+7                 | +8    |
| -1×-7                 | -8    |

From the table you can see that the numbers needed are +1 and +7. So:

$$x^2 + 8x + 7 = (x+1)(x+7)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

(c) 
$$x^2 + 8x + 12 = (x+2)(x+6)$$

To factorise this quadratic expression you need to find two numbers that multiply together to give the constant +12 and also add to give the coefficient of x which is +8.

| Multiplied to make +12 | Added          |
|------------------------|----------------|
| +1×+12                 | +13            |
| +2×+6                  | +8             |
| + 3×+4                 | +7             |
| -1×-12                 | -13            |
| -2×-6                  | -8             |
| $-3\times-4$           | <del>-</del> 7 |

From the table you can see that the numbers needed are +2 and +6. So:

$$x^2 + 8x + 12 = (x+2)(x+6)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

The table in part (c) can be used to answer parts (d) to (h):

(d) From row 3 
$$x^2 + 7x + 12 = (x+3)(x+4)$$

(e) From row 1 
$$x^2 + 13x + 12 = (x+1)(x+12)$$

(f) From row 6 
$$x^2 - 7x + 12 = (x-3)(x-4)$$

(g) From row 5 
$$x^2 - 8x + 12 = (x-2)(x-6)$$

(h) From row 4 
$$x^2 - 13x + 12 = (x-1)(x-12)$$

You can check all of these answers by multiplying out the brackets (see study guide: *Opening Brackets*).

(a) 
$$x^2 - x - 12 = (x+3)(x-4)$$

To factorise this quadratic expression you need to find two numbers that multiply together to give the constant -12 and also add to give the coefficient of x which is -1.

| Multiplied to make -12 | Added    |
|------------------------|----------|
| +1×-12                 | -11      |
| +2×-6                  | <u> </u> |
| +3×-4                  | -1       |
| + 4×-3                 | +1       |
| +6×-2                  | + 4      |
| +12×-1                 | +11      |

From the table you can see that the numbers needed are +3 and -4. So:

$$x^2 - x - 12 = (x+3)(x-4)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

(b) 
$$x^2 + x - 12 = (x+4)(x-3)$$

You can use the table in question 2.(a) but this time you need two numbers which multiply together to give -12 and also add to give +1. From row 4 of the table you can see that the numbers needed are +4 and -3. So:

$$x^2 + x - 12 = (x + 4)(x - 3)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

(c) 
$$x^2-3x-10=(x+2)(x-5)$$

To factorise this quadratic expression you need to find two numbers that multiply together to give the constant -10 and also add to give the coefficient of x which is -3.

| Multiplied to make -10 | Added     |
|------------------------|-----------|
| +1×-10                 | <b>-9</b> |
| +2×-5                  | -3        |
| +5×-2                  | +3        |
| +10×-1                 | +9        |

From the table you can see that the numbers needed are +2 and -5. So:

$$x^2 - 3x - 10 = (x+2)(x-5)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

(d) 
$$x^2 + 3x - 10 = (x+5)(x-2)$$

You can use the table in question 2.(c) but this time you need two numbers which multiply together to give -10 and also add to give +3. From row 3 of the table you can see that the numbers needed are +5 and -2. So:

$$x^2 + 3x - 10 = (x+5)(x-2)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

3.

(a) 
$$6x^2 - 3x = 3x(2x-1)$$

Although this is a quadratic expression, as there are common factors you can factorise it using simple factorisation (see study guide: *Simple Factorisation*). There is a common factor of 3x in  $6x^2 - 3x$ , therefore:

$$6x^2 - 3x = 3x(2x - 1)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

(b) 
$$x^2 - 100 = (x+10)(x-10)$$

This quadratic expression is an example of the **difference of two squares**. The difference of two squares is method which factorises quadratic expressions of the form  $x^2 - m^2$  as (x+m)(x-m). In this example m=10 and so:

$$x^2-100=(x+10)(x-10)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

You can also factorise this equation by finding two numbers that multiply together to give the constant -100 and also add to give the coefficient of x which is 0.

(c) 
$$x^2 - 1 = (x+1)(x-1)$$

This quadratic expression is another example of the **difference of two squares**. The difference of two squares is method which factorises quadratic expressions of the form  $x^2 - m^2$  as (x + m)(x - m). In this example m = 1 and so:

$$x^2 - 1 = (x+1)(x-1)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

You can also factorise this equation by finding two numbers that multiply together to give the constant -1 and also add to give the coefficient of x which is 0.

(d) 
$$4x^2-36=(2x+6)(2x-6)$$

This quadratic expression is a more complicated example of the **difference of two squares**. The difference of two squares is method which factorises quadratic expressions of the form  $x^2 - m^2$  as (x + m)(x - m). In this example m = 6 and the first term is  $(2x)^2$  so:

$$4x^2 - 36 = (2x+6)(2x-6)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

(e) 
$$7x^2 - 2 = (\sqrt{7}x + \sqrt{2})(\sqrt{7}x - \sqrt{2})$$

This quadratic expression is a more complicated example of the **difference of two squares**. The difference of two squares is method which factorises quadratic expressions of the form  $x^2 - m^2$  as (x + m)(x - m). In this example  $m = \sqrt{2}$  as  $(\sqrt{2})^2 = 2$  and the first term is  $(\sqrt{7}x)^2$  so:

$$7x^2 - 2 = (\sqrt{7}x + \sqrt{2})(\sqrt{7}x - \sqrt{2})$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

(f) 
$$\frac{x^2}{4} - 1 = \left(\frac{x}{2} + 1\right)\left(\frac{x}{2} - 1\right)$$

This quadratic expression is a more complicated example of the **difference of two squares**. The difference of two squares is method which factorises quadratic expressions of the form  $x^2 - m^2$  as (x + m)(x - m). In this example m = 1 and the first term is  $(x/2)^2$  so:

$$\frac{x^2}{4} - 1 = \left(\frac{x}{2} + 1\right)\left(\frac{x}{2} - 1\right)$$

You can check your answer by multiplying out the brackets (see study guide: *Opening Brackets*).

4. What whole number values of a mean that you can factorise the quadratic expression  $x^2 + ax + 16$ ?

To find valid values for a you need to add together any two numbers that multiply together to give the constant +16:

| Multiplied to make +16 | Added |
|------------------------|-------|
| +1×+16                 | +17   |
| + 2×+8                 | +10   |
| + 4×+4                 | +8    |
| -4×-4                  | -8    |
| -2×-8                  | -10   |
| −1×−16                 | -17   |

From the table you can see that valid choices for a are 17, 10, 8, -8, -10 and -17. These give the quadratic expressions

$$x^{2} + 17x + 16 = (x+1)(x+16)$$

$$x^{2} - 17x + 16 = (x-1)(x-16)$$

$$x^{2} + 10x + 16 = (x+2)(x+8)$$

$$x^{2} - 10x + 16 = (x-2)(x-8)$$

$$x^{2} + 8x + 16 = (x+4)(x+4) = (x+4)^{2}$$

$$x^{2} - 8x + 16 = (x-4)(x-4) = (x-4)^{2}$$

You can check all these answers by multiplying out the brackets (see study guide: *Opening Brackets*).



These model answers are one of a series on mathematics produced by the Learning Enhancement Team.

Scan the QR-code with a smartphone app for more resources.

